Arithmetic Discrete Parabolas

نویسندگان

  • Isabelle Debled-Rennesson
  • Eric Domenjoud
  • Damien Jamet
چکیده

In the present paper, we propose a new definition of discrete parabolas, the so-called arithmetic discrete parabolas. We base our approach on a non-constant thickness function and characterized the 0connected and 1-connected parabolas in terms of thickness function. This results extend the well-known characterization of the κ-connectedness of arithmetic discrete lines, depending on the norm ‖ · ‖∞ and ‖ · ‖1 of their normal vector.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Patterns in discretized parabolas and length estimation (extended version)

We estimate the frequency of the patterns in the discretization of parabolas, when the resolution tends to zero. We deduce that local estimators of length almost never converge to the length for the parabolas.

متن کامل

Patterns in Discretized Parabolas and Length Estimation

We estimate the frequency of the patterns in the discretization of parabolas, when the resolution tends to zero. We deduce that local estimators of length almost never converge to the length for the parabolas.

متن کامل

How to Recognize a Parabola

Parabolas have many interesting properties which were perhaps more well known in centuries past. Many of these properties hold only for parabolas, providing a characterization which can be used to recognize (theoretically, at least) a parabola. Here, we present a dozen characterizations of parabolas, involving tangent lines, areas, and the well-known reflective property. While some of these pro...

متن کامل

A Bilinear Oscillatory Integral along Parabolas

We establish an L×L → L norm estimate for a bilinear oscillatory integral operator along parabolas incorporating oscillatory factors e −β .

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006